

Coal, Climate Change mitigation and Populism

Jan Christoph Steckel

University of Melbourne, March 13, 2019

... a timely topic

BBC Sign in News Spor	t Weather Shop Reel Travel
NEWS	
Home Video World UK Business Tech	The New York Times
Science & Environment	The Topics V Current edition More V
Climate change: Warm concentrations at new By Matt McGrath Environment correspondent	The World Needs to Coal. Why Is It So
© 22 November 2018	Troubling signs for the future of
Cal fired plants such as this one in Arizona are a signi	Australia's giant coal industry An uncertain future

Outline

- Coal and climate change Where do we stand?
- Why do countries invest in coal?
 - Wrong incentives
 - Financing costs
 - Vested interests
- Where to go: Some steps forward

The climate problem at a glance

Source: Bauer et al. (2014); Jakob/Hilaire (2015)

Resources and reserves to remain underground until 2100 (median values compared to BAU, AR5 Database)

Until 2100	With CCS [%]	No CCS [%]
Coal	70	89
Oil	35	63
Gas	32	64

70 – 90% of available coal reserves and resources will need to stay in the ground if climate targets are to be achieved.

General Structure of Deep Mitigation Pathways

Scenarios: Coal needs to be phased out urgently

Between 2020 and 2030 coal (depending on the scenario and the ambition of the climate target) needs to be phased out by between **~30% - 70% compared to 2020 levels.**

B1400: Medium Probability for remaining below 2°C warming in 2100 B800: High Probability for remaining below 2°C warming in 2100 B200: High Pobability for reminaing below 1.5° warming in 2100

Ambition of climate change mitigation

The good news: technological progress is faster than expected

Actual PV installation rates have constantly exeeded projections in the past.

Costs have fallen much faster than expected.

But: Emissions are rising!

Source: Global Carbon Project, Jackson et al. 2018

Coal consumes the CO₂-Budget

Coal eating up carbon budget

Who builds coal?

Many countries still invest heavily in coal; building all coal-fired plants that are currently in the pipeline would put the 2°C target out of reach.

MCC

Who invests in coal?

Source: MCC calculations based on Urgewald and Banktracker

Why do countries invest in coal?

- Social costs of coal are not reflected in the prices.
- Financing costs for energy related investments are significantly higher, which makes investments into capital-intensive alternatives difficult
- Vested (and conflicting) interests are often making a case for coal in national policy contexts

Most emissions are not covered by a price

Why do countries invest in coal?

- Social costs of coal are not reflected in the prices.
- Financing costs for energy related investments are significantly higher, which makes investments into capital-intensive alternatives difficult
- Vested (and conflicting) interests are often making a case for coal in national policy contexts

Coal is cheap – When capital costs are high

High capital costs vs. carbon pricing

When capital costs are high, even high levels of carbon pricing will not lead to a phase out of coal!

Why do countries invest in coal?

- Social costs of coal are not reflected in the prices.
- Financing costs for energy related investments are significantly higher, which makes investments into capital-intensive alternatives difficult
- Vested (and conflicting) interests are often making a case for coal in national policy contexts

Steps forward

- Internationally: A sequence of phase outs
- A coal transition should be embedded in a broader climate policy including carbong prices.
- A coal transition needs political guidance

A sequential plan of action

Energy generation from coal	When coal plants were built	When coal plants were built	

Source: Steckel, Jakob et al., in prep.

Steps forward

- Internationally: A sequence of phase outs
- A coal transition should be embedded in a broader climate policy including carbong prices.
- A coal transition needs political guidance

CO₂ taxes lead to significant revenues

Impacts on Households: Global assessment with coherent data set

- Based on household expenditure data from World Bank Consumption Database
 - 87 countries, 106 household consumption categories
 - Four income groups, lowest < USD 2.97 daily per capita consumtion
- Combined with carbon intensity data from an environmentally-extended multiregional input-output (MRIO) model → household specific carbon footprints
- Calculate immediate, short term distributional incidence of a carbon tax

... but they still hurt the poor.

- Based on household expenditure data from World Bank Consumption Database
 - 87 countries, 106 household consumption categories
 - Four income groups, lowest < USD 2.97 daily per capita consumtion
- Combined with carbon intensity data from an environmentally-extended multiregional input-output (MRIO) model → household specific carbon footprints
- Calculate immediate, short term distributional incidence of a carbon tax

How to use carbon pricing revenues?

Table 1 | Recycling m equity and acceptab **Recycling mechanism** Labour tax (initial syste non-optimal) Labour tax (initial syste optimal) Capital/corporate tax (initial system non-opti Capital/corporate tax (initial system optimal) Fraction of public SDG needs covered by carbon pricing Directed transfers Uniform transfers (initia share of public finance in total needs > median < median system non-optimal) < 10% 10-20% 20-30% Uniform transfers (initia 30-60% 60-100% system optimal) > 100%

Equity and efficiency are detern

on the other alcoon applicing it evenues fican betweed to icovertia large part of public investment needs on public economics. Plus (+) and minus (-) signs indicate positive and negative evaluations. TOT THE SDUS respectively, whereas 0 indicates a neutral evaluation.

no data

Steps forward

- Internationally: A sequence of phase outs
- A coal transition should be embedded in a broader climate policy including carbong prices.
- A coal transition needs political guidance

Managing the transition

- Despite positive global welfare implications, some stakeholders might lose from phasing out coal, holding the power to veto necessary reforms. They might need to receive targeted support:
- Workers: Social protection, social dialogue, economic diversification can ensure just transitions
- Coal owners and industry: Compensation (e.g., by a fraction of the carbon rent), coal phase out agreements

- **Energy users:** Compensatory redistributive policies, including cash transfers, providing public goods (e.g. infrastructure), or tax reductions
- Communication is found to be key regarding the success of past reforms

Learning from trade: Not caring might give you the next Trump

The German Coal Commission

Currently: Recommendation to the government by expert commission from different fields, including people from affected regions

Results:

- Phase out all coal until 2038
- Establish a timetable, with 12.5 GW to be shut down until 2022
- Invest > USD 40 bln in affected areas
- Relocate (federal) government jobs (up to 5,000) to affected areas
- Reducing domestic power bills
- Compensate energy-intensive industry for loss of cheap power
- Avoid clearance of 'Hambach forest' in the western parts of Germany

Which political steps / instruments \rightarrow still to be seen

Summary

- There is not much time left to phasing out coal if climate targets are to be achieved
- To phase out coal, there is no "one-size fits all strategy", but tailor-made and country-specific strategy needed
- Without getting the prices right phasing out coal remains an up-hill battle
- Managing the transition is key, transfers can make a transition socially just and equitable.
- Transfers should account for identity questions

hanks to Svein T veitdal@Twitter

Global Commons and Climate Change gGmbH

Thank you!

Wrong incentives

Prices are not at all reflecting social costs of carbon

- Only a few countries tax carbon explicitly
- Fuel subsidies for fossil fuels are high, IMF estimates USD 5 trl in 2013 (~6% of global GDP)
- Globally on average CO₂ is subsidized by USD 150 per tonne (including externalities)

Global subsidies for fossil fuels

How to finance the transition?

The climate rent would be more than sufficient to compensate fossil fuel owners