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H I G H L I G H T S

• Automated negotiation of energy exchange contracts between prosumers.• Contracts are energy loans, and valued on prosumers’ heterogeneous preferences.• Negotiated allocations increase system efficiency and fairness over the status quo.

• System efficiency is increased without central coordination, in a P2P fashion.
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A B S T R A C T

This paper presents an automated peer-to-peer negotiation strategy for settling energy contracts among prosumers
in a Residential Energy Cooperative considering heterogeneity prosumer preferences. The heterogeneity arises
from prosumers’ evaluation of energy contracts through multiple societal and environmental criteria and the
prosumers’ private preferences over those criteria. The prosumers engage in bilateral negotiations with peers to
mutually agree on periodical energy contracts/loans consisting of the energy volume to be exchanged at that
period and the return time of the exchanged energy. The negotiating prosumers navigate through a common
negotiation domain consisting of potential energy contracts and evaluate those contracts from their valuations on
the entailed criteria against a utility function that is robust against generation and demand uncertainty. From the
repeated interactions, a prosumer gradually learns about the compatibility of its peers in reaching energy con-
tracts that are closer to Nash solutions. Empirical evaluation on real demand, generation and storage profiles – in
multiple system scales – illustrates that the proposed negotiation based strategy can increase the system effi-
ciency (measured by utilitarian social welfare) and fairness (measured by Nash social welfare) over a baseline
strategy and an individual flexibility control strategy representing the status quo strategy. We thus elicit system
benefits from peer-to-peer flexibility exchange already without any central coordination and market operator,
providing a simple yet flexible and effective paradigm that complements existing markets.

1. Introduction

The deregulated electricity markets refrain small-scale (residential)
prosumers to actively participate in the wholesale market. The prosu-
mers are instead serviced in retail markets, where they are individually
metered by large suppliers [2], through representative residential ag-
gregators and retailers. This situation leads to inefficiencies as the pro-
sumers are incentivised to individually control their local energy usage

without taking the overall demand and supply status into consideration.
The jointly coordinated prosumers’ (distributed) energy resources po-
tentially shape up the overall demand and offer significant value to the
energy system by alleviating the need for investment in additional
generation and transmission infrastructure [3] and by minimizing the
fluctuations due to renewable power integration [4]. However, prop-
erly incentivizing the prosumers to coordinate their locally owned
distributed resources is quite a challenge, and justifiably a field of
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active research in Smart Grids. One avenue is to apply distributed op-
timization techniques that facilitate the coordination of the DERs that
are owned and controlled by a single entity. However, these techniques
are not readily applicable when these resources have different owners;
at least not without considering the strategic interactions between the
owners.

Local energy exchange may offer incentives to the prosumers to
engage in competition and local trading [5]. For energy communities,
these mechanisms may need to take into account and balance several
objectives, including, next to efficiency, altruism, or fairness of allo-
cations [6]. Prosumers in an REC may have diverse preferences over
how their energy profiles are valued due to various societal and en-
vironmental factors. For instance, the prosumers may evaluate energy
contracts based on several criteria, e.g. self-sufficiency or autarky, cost of
energy, loss in flexibility, sustainability, and so on [7], resulting in a pri-
vate valuation for respective prosumers. Market-based mechanisms, in
their current form, are not fully designed to handle such a hetero-
geneity in distributed decision making, where the prosumer-specific
individual allocations are of absolute necessity. In addition, for energy
communities they leave open the question who executes the central
market and receives central control of allocation and information. In
the context of a local prosumer marketplace with low-liquidity settings,
the state of the research fails to provide any concrete guidelines on how
to perform distributed energy allocations autonomously by considering
prosumers’ preferences. In particular, as it will be discussed in details in
Section 2, there is a clear research gap in addressing energy contract
settlement for sustainability conscious prosumers who have preferences
that trade-off costs with other quantifiable impacts of energy trading
(e.g. autarky, loss in flexibility, and so on).

While complete preferences would need to be computed and re-
vealed for market-based solutions, peer-to-peer (P2P) negotiation pro-
ceed iteratively, reducing the amount of information revealed, and
keeping responsibility with the individual prosumers. Automated ne-
gotiation is an organic process of joint decision making where multiple
stakeholders – typically represented by autonomous agents – with
conflicting interests engage and make a decision [8]. The participating
agents may have the desire to cooperate in an automated negotiation
setting, but due to the conflicting interests, these agents intend to join
hands in reaching a common goal [9]. The negotiation approach con-
trasts market-based approaches, and its iterative nature provides a
more natural model for low liquidity settings, in which personalized
solutions need to be found in large outcome spaces. We present an
automated negotiation approach as an energy exchange mechanism to
settle energy contract as energy loans between prosumers in a P2P
fashion. During each negotiation session, a pair of prosumers (re-
presented by software agents) engage in a bilateral negotiation by ex-
changing and eventually agreeing on energy contracts, comprised of
several negotiation issues (here energy volume and return time). At the
start, an agent randomly chooses its peer to engage in a negotiation,
and gradually learns to make an informed peer choice by applying a
learning mechanism. The proxy agents evaluate offers based on criteria
that model the heterogeneous preferences of the users they represent:
(1) loss in flexibility (in local storage), and (2) autarky or sustainability of
the offers. The agents can weigh these criteria differently, thereby en-
abling heterogeneity and trade-offs between the agents. In addition to
that, agents take into account the uncertainty imposed by demand and
renewable generation prediction while iteratively offering the energy

contracts with higher utility. While performing the repetitive interac-
tions, the agents iteratively learn about the compatibility of other
agents and consequently make an informed decision regarding choosing
negotiating partners.

The main contributions of this paper are as follows.

• We propose a novel and intuitive negotiation based strategy that
considers heterogeneity in prosumers through a distributed and au-
tonomous agent model, where the model encapsulates the agent’s
preferences on predefined criteria and uncertainties in agent’s net
demand in decision making process.
• The strategy enables the agents to gradually learn about negotiating
peers and eventually to make informed peer selection that increases
the overall success rate in contract settlements.
• We evaluate the performance of the proposed negotiation based
strategy over real residential demand, generation, and storage data
to elucidate the efficiency of the strategy in increasing the social
welfare over a baseline strategy and an individual flexibility control
strategy.

The rest of the paper is organized as follows: Section 2 provides an
overview of the related works and gauges the fit of the proposed
strategy in a P2P local marketplace setting. Section 3 describes a re-
sidential prosumer model and defines the energy contract that is used in
the negotiation process. Section 4 presents the negotiation based energy
exchange strategy, defines required algorithms and learning process,
and several contextual notions of allocative efficiency. Simulation case
studies are presented and discussed in Section 5. Finally, Section 6
concludes the paper with a glimpse of possible follow-up research.

2. Related works

In recent times, extensive research – either as academic practices or
as commercial or pilot projects – are conducted in the area of P2P en-
ergy trading across the different value chain of the electricity grid. One
stream of research goes into the direction of centralized or distributed
coordination mechanisms of distributed energy resources (DER) to
service-specific (e.g. ancillary services; voltage and frequency regula-
tions) support or to maximize the overall economic benefits (e.g. [10]).
The centralized coordination mechanisms are typically performed
through the direct control method via the energy storage system,
electric vehicles, and thermostatically controlled loads. The co-
ordinating entity, however, needs to periodically gather the states of
DERs (for instance, electric vehicles [11] and energy storage [12]) to
provide the optimized control signals, which becomes increasingly in-
tractable with the scale of the distribution system (e.g. the number of
energy storages in the distribution network). The distributed co-
ordination mechanisms, on the other hand, iteratively seek to converge
(e.g. Nash equilibrium) for a particularly desirable outcome. Based on
the modelling paradigm of the system, several techniques, such as La-
grangian Relaxation [13], and alternating direction method of multi-
pliers [14] have been deployed for the distributed coordination. Both
centralized and distributed coordination paradigms are interested in
maximizing the overall system performance, rather than focusing on
the welfare of individual prosumer. Therefore, the prosumers are often
provided with additional incentive to participate in the coordination
scheme.

S. Chakraborty, et al. Applied Energy xxx (xxxx) xxxx

2



A more centralized approach to local energy market design is to use
auction formations. An auction requires to buy and sell orders of local
energy submitted to a public order book. The orders are then matched
either continuously [15] or at discrete closing times. P2P energy
sharing could also facilitate the formation of a community energy
market; possibly, through a community microgrid, without any cen-
tralized control [16]). However, most of the frameworks presented in
the existing literature for P2P energy exchange are not fully adhering
the P2P system architecture; they rather follow a peer-to-pool-to-peer
paradigm (e.g. Fig. 2. in [17]) where a centralized entity – such as DSO
– exists to facilitate the trading between the parties, and thus are not
completely automated.

A different stream of related research is particular focused on the
P2P energy sharing platform [18] through the local marketplace
equipped with essential functionalities where the prosumers trade or
share energy with each other to achieve individual benefits [19]. Unlike
the aforementioned mechanisms, the prosumers are self-motivated to
participate and able to exercise full control over their DERs [20]. As
described in [21], distributed (without an intermediary) P2P energy
sharing research activities are broad categories into three categories:
auction model, multiagent model, and analytical model. In [22], the
authors develop a multiagent based simulation framework and a sys-
temic index system for the simulation and evaluation of various P2P
energy sharing mechanisms. A detailed four-layer system architecture
model for P2P energy trading in grid-connected microgrids is proposed
in [17] with the associated bidding system for the trading between
prosumers and consumers. The rise of P2P interactions paradigm
among different stakeholders gives rise to Game theory based strategies
and frameworks that lay the foundation of distributed decision making.
For instance, a coalitional game theory based approach is proposed to
encourage sustainable prosumer participation in P2P energy trading is
proposed in [23]. In [24], the author optimise the social benefit of
prosumers in a Virtual microgrid setting when the prosumers are ex-
posed to different roles – producers and consumers, and analyse the
allocation through Stackleberg game. The importance of applying P2P
energy trading further highlighted by a concept of Federated (virtual)
power plant [25], where the P2P trading encourages prosumers to form
the power plant through coalitions, and consequently realising the
prosumers values to power system value-chain.

Although the conducted research in both streams potentially pro-
vides economical benefits to involved parties, the heterogeneity in pro-
sumers’ preferences [7] – attributed to personalized allocation for
prosumers – have not been considered in deciding the energy alloca-
tions and flexibility coordination. Additionally, without proper co-
ordination of DERs and flexibilities, an energy community may face
technical and regulatory challenges [26]. Moreover, the curtailment of
feed-in due to excess supply of renewable energy (e.g. from rooftop PV)
and consequent reverse power flow arising from uncoordinated and
individually controlled DER maps to the loss of opportunity phenomena
that could otherwise be avoided by the synergetic and coordinated
exchange of DER among prosumers. Only recently, several noteworthy
research considered the heterogeneity in prosumers’ preferences, where
the heterogeneity arises from how a prosumer perceives different societal
and environmental aspects such as energy contracts, generation tech-
nologies, locations of the network, owners’ reputation, and so on in
different parts of distribution networks [27], particularly through P2P
contract network [28] and bilateral P2P negotiation strategy [1]. For
instance, in [28], the author presents an innovative bilateral contract
network as a scalable market for P2P energy trading across the different
value chain of electricity networks considering different types of
players and their preferences.

Automated P2P negotiation [8] contrasts with the canonical P2P
trading in the sense that the former is an interactive decision making
paradigm that provides a win-win outcome under partial/no informa-
tion sharing environment, while the latter facilitates a commodity-or-
iented trading platform – in more of an architectural paradigm – where
the decision making is rather a seconday objective. Automated nego-
tiation based iterative decision making is increasingly considered to be
a promising facilitator of intelligent smart grid [29,1]. For instance,
[29] proposed an automated negotiation protocol that has been applied
to address the energy exchange between off-grid smart homes. How-
ever, the designed protocol imposes several key restrictions, in which
only two exchange periods over a day in which only equal amounts en-
ergy volume can be exchanged, and thereby has limited applicability in
real settings. In [1], an automated negotiation strategy is utilised for
settlement of energy contract in residential cooperatives considering
the heterogeneity of prosumers’ preferences. The agents in [1] imple-
ment a random peer selection strategy that, on several occasions

Fig. 1. An example of Residential Energy
Cooperative (REC) with four prosumers/agents –
each comprising a PV panel and a residential
battery – are shown on the left side. On the right
side, the interactions between two prosumers/
agents (prosumer A and prosumer B) in settling
energy contracts through P2P negotiation are
zoomed-in and illustrated. While the detailed
models are described in Section 3, the associated
concepts and definitions are put together in
Section 4.
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(around 20% of the total negotiation sessions), leads to failed nego-
tiations as the agent may choose an incompatible peer. This paper ad-
vances the work [1] by proposing a learning-based intelligent peer se-
lection strategy that increases the quality of the reached agreements in
terms of fairness, and the success rate of negotiation. In this paper, the
negotiation domain is enhanced to accommodate contracts that poten-
tially is an agreement that may be missing in a limited negotiation domain
explored the previous work. Additionally, this paper analyses the P2P
interactions for drawing insights regarding emerging cluster of prosu-
mers with compatible strategies.

3. Modelling prosumers and energy contracts

In this section, we present a prosumer by systematically modelling
their load and generation profiles integrated with batteries. Later, we
define energy contracts with associated concepts followed by uncertainty
modelling in planning that a potential energy contract brings. The en-
ergy cooperatives are generally located at the Low Voltage (LV) dis-
tribution network where the prosumers are physically connected to
exchange energy. However, we limit our contribution to the tertiary
level of control without explicitly touching the physicality of the un-
derlying distribution network such as power flow analysis. An outline of
an REC with four prosumers, and the overall interactions between two
agents are illustrated in Fig. 1.

3.1. Prosumer model

A prosumer is assumed to be equipped with a rooftop Solar
Photovoltaic (PV) and a flexibility resource (e.g. battery energy storage
system). We represent a prosumer as a software agent, i N , where N is
the set of agents in the cooperative. Let the (predicted) generation
profile (through PV panels) of an agent i be represented by
Pv t t T( ),i , where T is the set of time-periods. Similarly, the pre-
dicted load profile of the agent i, at t is represented by Ld t( )i . In ad-
dition, the battery dispatch (load) profile is denoted as Pb t( )i , and a
choice of agent i. The battery state of charge is modelled by the fol-
lowing equation (Eq. (1))

= + × ×X t X t Pb t t( ) ( 1) ( ) ,i i b i b (1)

where X t( )i is state of charge (SOC) of the battery at t and is operated
within a limit. The constant degradation of the battery is represented by

b. The dispatched battery power, Pb t( )i is constrained to operate within
a limit. The efficiency of the battery, b is dependent on whether the
battery is being charged (with efficiency b

c) or discharged (with effi-
ciency b

d), and is shown in the following equation (Eq. (2))

=
Pb t, if ( ) 0

, otherwiseb
b
c

i
1

b
d (2)

After self-consumption, the net demand of agent i becomes (Eq. (3))

=Ld t Ld t Pv t( ) ( ) ( ).i
net

i i (3)

An agent i engages in a trade with a subset of peers j J N at t, and
the volume of energy being traded with each other is denoted as ex t( )i j, .
The residual of agent i – after self-consumption, followed by the (cu-
mulative) exchange with the peers and the local battery activation – is
the energy either wasted or to be traded on the external market, and is

presented by the following energy balancing equation (Eq. (4)).

= + +Ld t Ld t ex t Pb t( ) ( ) ( ) ( ).i
res

i
net

j J
i j i,

(4)

3.2. Energy contracts: P2P energy lending

A simple but effective contract to exchange flexibility in energy
systems is energy loan [30], which we here adapt to the P2P setting. In
automated multi-issue negotiation, agents negotiate over several issues
with a target to achieve an agreement – a value attribution to those
issues – that generates a socially optimal outcome for the participating
agents. We consider energy loans parameterized by two important is-
sues over which the agents negotiate:

1. The volume of energy to be traded between two agents (denoted by
q , where is a discrete set of energy volumes).

2. The time of receiving the energy back (denoted by >
+Z 0,

where is a discrete set of positive time periods).

A negotiation domain comprises all possible energy contracts, i.e.
= × . Every = q( , ) is a potential energy contract (or loan)

within the multi-issue negotiation that specifies a value for each issue.
The energy volume q and the return time +t influence respective

energy profiles for both negotiating agents and consequently affect
their local flexibility dispatch. For instance, executing an energy contract

= q( , ) between two agents i and j is reflected on the exchange vector
exi j, , as follows (Eq. (5)):

=
+ =

ex t q
ex t q

( ) ,
( ) .

i j

i j

,

, (5)

According to the energy balancing equation (Eq. (4)), a change in exi j,
changes the battery dispatch Pb t( )i while keeping the residual demand
constant. The exchanged volume exi j, is bounded by the physical link
constraint that describes the maximum power to be exchanged between
agents i and j. Therefore,

×ex z L ,i j i j, , (6)

where Li j, is the physical link limit between agents i and j, and z is the
link efficiency.

As depicted before, agents may have varied preferences over a
predefined set of criteria, i.e. the agents tend to weigh the criteria
differently. Let represent the set of criteria upon which the agents
state their preferences. In this paper, we assume an agent evaluates an
energy profile – resulting from an energy contract – based on two cri-
teria: loss in flexibility and autarky i.e.

= =c c{ lossinflexibility, autarky}1 2 . The weight an agent i places on
criterion c can be represented as a scaler c

i (where c
i are nor-

malized weights, i.e. = 1c c
i ) and is private to i. We assume, the

weights are known to agent. An evaluation function, e ( )c t
i
, is defined

that denotes how an energy contract performs, at t, from the perspective
of criterion c given the private preferences of agent i. Additionally, a
planning horizon, w defines how far ahead of an agent looks while
deciding about the contracts. The planning horizon depends on the
uncertainty on the demand/generation prediction.

Criterion 1: Criterion loss in flexibility measures the emergent loss (in
energy) due to the round-trip efficiency of the flexibility (e.g. battery)
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dispatch resulting from implementing an energy contract. Particularly,
activating (i.e. charging/discharging) a battery incurs loss as the round-
trip efficiency reduces the amount of energy. The evaluation function
associated with loss in flexibility is defined as

= + +
=

= +
e Pb k X t t w( ) ( ) : ,c t

i

k t

k t w

i i,1
(7)

where +X t t w( : )i represents a vector of SOC profile of the battery from
period t to +t w and the function (.) calculates the offset power re-
quires complete a full cycle of the battery, i.e. to bring the final SOC (at

+t w) equals to initial SOC (at t). Therefore, directly influences the
battery dispatch power Pb t( )i through the energy balancing equation,
i.e. Eq. (4).

Criterion 2: Autarky in an energy contract signifies the sustainability
of the contract, which actually measures the total (estimated) energy to
be traded on the external market provided that the energy contract is
implemented. The evaluation function associated autarky is formally
defined as

=
=

= +
e Ld k( ) ( ) .c t

i

k t

k t w

i
res

,2
(8)

Agent aggregates the weighted evaluation function of individual cri-
terion to measure the quality of an energy contract. The utility function is
defined as

=U e( ) ( ).i t
c

c
i

c t
i

, ,
(9)

3.3. Uncertainty modelling in net demand

The load profile Ld t( )i and generation profile Pv t( )i of an agent i are
predicted signals and are potential sources of uncertainties. The utility
function defined in Eq. (9) depends on the point prediction of the net
demand and therefore, may potentially inadequate of providing robust
planning of local flexibility under uncertainty. To overcome this chal-
lenge, we utilise a set of stochastic scenarios of predicted net load
profiles Ldi

net
and calculate the expected utility of an energy contract [31].

The scenarios of predicted net load profile are generated by taking
samples from a Gaussian Process comprising of.

• a Gaussian error Probability Density Functions (PDF), for each of the
discrete lags l in planning horizon w, i.e. =l w0, , 1, and
• a Gaussian PDF that models the interdependency between net load
of two consecutive periods.

A scenario s of the predicted net load demand is calculated as

+ = + +Ld t l t s Ld t l t d l s( , ) ( ) ( , ),i
net

i
net

i (10)

where d l s( , )i is sampled from the aforementioned Gaussian Process, and
+Ld t l t( )i

net
is the predicted net demand for period +t l when pre-

dicted at t. Similarly, the residual net demand, defined in Eq. (4), for the
scenario s is restructured as

+ = + + + +Ld t l t s Ld t l t s ex t Pb t l t s, , ( ) , .i
res

i
net

j J
i j i,

(11)

Consequently, e s( , )c t
i

,1 and e s( , )c t
i

,2 are be redefined for the scenario
s – as shown below:

= + +

= +

=

=

=

=

e s Pb t l t s s

e s Ld t l t s

X, , , ,

, , .

c t
i

l

l w

i

c t
i

l

l w

i
res

i,
0

1

,
0

1

1

2
(12)

Therefore, the utility of an offer for the scenario s is modified as:

=U s e s, , .i t
c

c
i

c t
i

, ,
(13)

Finally, the expected utility an energy contract considering the un-
certainties is defined as

=U Pr s U s( ) ( )· , ,i t
s

i t, ,
(14)

where Pr s( ) is the probability of the scenario s and U s( , )i t, is the
modified utility of an offer considering the net predicted load scenario
s. We assume the scenarios are equiprobable, and thus making

=Pr s( ) 1/ . Hereafter, we use the term utility to represent expected
utility for the ease of description and to avoid potential confusions. The
pseudo-predictions of the net demand are generated by adding a
Gaussian noise to the real net demand signal.

4. A negotiation based exchange mechanism

This section describes a negotiation based exchange mechanism
with concept definitions of different contextual aspects of automated
negotiation, as referred in Fig. 1. The algorithms describing the pair-
wise negotiation process and related procedures are presented as well in
this section followed by a toy example to further clarify the mechanism.
Finally, the quantification of efficiency and fairness of the proposed
mechanism is detailed, which will be utilised to measure the perfor-
mance of the proposed method.

Given the residential energy cooperative settings of several con-
nected prosumers, the negotiation process may be understood as a
multilateral negotiation, emerging from multiple bilateral P2P pairwise
negotiations.1 As the negotiation protocol, we implement the alternating
offers protocol [8], which is commonly used in automated multi-issue
negotiation settings. At a particular time period, the protocol assumes
that each agent only engages in once for a P2P negotiation.

4.1. Aspects of automated negotiation

To fully grasp the applicability of automated negotiation in an en-
ergy contract settlement context, several important aspects of the ne-
gotiation process are defined in the following subsection.

Definition 1. Contract space: A negotiating agent maintains an
ordered contract space of potential offers comprising the set of the
issues in the negotiation domain, . The space is ordered according to
the utilities of the contracts- defined in Eq. (14).

Definition 2. Aspiration region: The aspiration region defines the area
in the target utility space within which an agent aspires to strike a deal
with the peers. The region is bordered by an aspiration value – defined
by the agent and is private to that agent – that is specified by a quantile
of the distribution of U ( ),i t, . In a sense, the aspiration value
determines the degree of cooperativeness of an agent; a higher quantile
represents lower cooperation and vice versa.

Definition 3. Agreement: An agreement is an energy contract that is
approved by both negotiating agents, and can be denoted by

1 An alternative approach could be multi to multi negotiation. We do not en-
tertain that option as multi to multi negotiation typically requires a mediator or a
centralized coordination, as per the current state of the research.
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= q( , ).

Definition 4. Deadline: The maximum number of rounds of a
negotiation before which the negotiating agents should reach an
agreement. If no agreement is formed after the deadline, the negotiation
fails, and the agents implement the perspective No-deal solution, i.e.
they walk-away with the reservation value.

Definition 5. Reservation value: The private value a negotiating agent
keeps as an outside option in case of a disagreement. In this work, we
define reservation value as the utility an agent perceives by
contemplating no exchange with peers, i.e. U ( )i t, , when

= =q{ 0, 0}.

Definition 6. No-deal solution: The no-deal solution resulting from the
situation when the agents choose not to engage in negotiation and
consequently do not exchange energy, i.e. = {0.0, 0} with peers.

Definition 7. Fair outcome: An important measure to quantify the
fairness in an outcome could be determined by the Nash solution. The
Nash solution is the outcome that maximizes the product of the utilities
(Eq. (14)) acquired from an energy contract of negotiating agents (e.g.
agent i and j).

=t U U( ) max ( )· ( ).i t i tNash , , (15)

In a negotiation process, the agents distributively (and interactively)
search through the to jointly agree on an energy contract that maximizes
their perspective expected utilities. The problem of finding an agreement and
the definitions above are illustrated in Fig. 2. Agents’ aspiration regions are
shaded in the Figure, whose intersection region represents the area where
the agents prefer to strike a contract. To further elucidate the negotiation
process in context of the aforementioned definitions, Fig. 3 is presented
that highlights an exemplary negotiation domain and the associated utility of
all possible energy contracts calculated from the perspective of an agent
that has an aspiration quantile of 80% of the distribution that results in a
value of 1.18, i.e. the agent aspires to receive at least 1.18 as the utility
from a contract. The demarcation of the aspiration regions in the negotiation
domain are outlined through the contoured line. The figure illustrates that
the agent prefers to provide energy to its peers – resulting in a high utility
region for negative quantities without caring so much about the return
time, and it has a limited window of receiving energy from peers. The
distribution of the target utility perceived by the agent for the same ex-
ample is presented in Fig. 4. The contract space is apparent from the figure
– as the negotiation commenced, the agent starts bidding potential offers
that incur the higher target utilities down to the aspiration quantile, which is

1.18. By doing so, the agent follows a sophisticated bidding strategy that
traces the agent’s utility distribution over potential offers within the as-
piration region.

4.2. Peer selection process

The peer selection process is conducted by implementing an
-Greedy policy centred around the Nash (fair) solutions. An agent will
be beneficial to pair-up with another agent where the mutually con-
sented agreement is more likely to be the Nash solution (Definition 7) for
a particular negotiation session. The iterative process implements an
-Greedy policy that chooses a peer – drawing parallels from choosing
an action in a general Reinforcement Learning framework– that histori-
cally provides fairer solutions, with a probability of (1 ), or a
random peer with a small probability of . Due to the implicit learning
of what would the best peer for an agent, the agent gradually learns to
make an intelligent peer selection call as negotiation process iterates
over time. Implementing such a learning based peer selection process
would increase the quality of achieved agreement and reduce the like-
lihood of failed negotiation sessions as the agents are already equipped
with historical information of pairwise outcomes with other agents.

Fig. 2. Illustration of a contract space of two agents in relation to the definitions
presented in Section 4.1. The black dots represent the potential contracts (or
agreement, i.e. ), while the Nash (Fair) outcome is shown as a blue dot. The
Pareto Frontier hosts the set of contracts that are Pareto-efficient [32]. The agent
specific aspiration regions and reservation values are highlighted.

Fig. 3. An exemplary issue space representing a negotiation domain with ac-
quired utility. The issues are presented at the axes whereas the utility of the
contracts is plotted as a heat-map. The contoured (darker) regions are the as-
piration region as they contain the preferred energy contracts with the utility
higher than the reservation value.

Fig. 4. Distribution of the target utility of the agent described in Fig. 3 with
aspiration quantile of 80%. The aspiration region is grey-ed out that results in the
utility within [ 1.0, 1.18].
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4.3. Algorithms: Pairwise negotiation process

Algorithm 1. NEGOTIATE-Contract(A B t, , , , )

Algorithm 2. agent.GENERATE-Contract-Space( t, )

Algorithm 3. agent.CALCULATE-Utility(offer t, )

Algorithm 4. agent.MAKE-Offer(t round, )

Algorithm 5. agent.ACCEPT-Offer(offer t, )
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In this section, we outline several key algorithms that are required
to carry out a pairwise automated negotiation through alternating offer
protocol. Algorithm 1 describes the high-level algorithm of the nego-
tiation process between two agents A, and B at time t T via alternating
protocol. The Algorithm 1 is presented in a centralized (i.e. non-agent)
fashion for simplicity; an agent version of the same can be easily in-
ferred from the algorithm. The process starts with creating a negotia-
tion domain that will be used by both agents. Agents then generate

perspective ordered contract space by evaluating all possible contracts in
while considering their utility over a planning horizon w. The detailed

process of generating contract space along with the utilities of the con-
tracts therein is described in Algorithm 2. The calculation of utility for
an offer is outlined in Algorithm 3. Coming back to Algorithm 1, an
alternating offers protocol is implemented where, in each round, one of
the agents proposes an offer (picked from the ordered contract space) to
the other agent until a agreement is reached or the deadline is en-
countered. The process of making and accepting an offer by an agent
are detailed in Algorithm 4 and 5, respectively. In case an agreement is
reached, the agents implement the agreed energy contract. Otherwise,
the plans associated with the reservation values are implemented by each
agent. While implementing an energy contract, an agent (for instance, A)
amends to an existing exchange pool by stating how much energy (q ) to
be traded with whom (for instance, B) and when (t) as well as by listing
the same volume of energy ( q ) is committed to be traded back at

+t( ) from B (equivalent to Eq. (5)).
As the negotiation and exchange proceed chronologically, the al-

gorithm inherently exhibits a behaviour similar to that of a Model
Predictive Control (MPC) [12] methodology that controls the flexibility
resources (e.g. battery). After a successful negotiation – shown in
Algorithm 1, an agent implements the agreement contract that effec-
tively controls the battery with charge (or discharge) signals (as per
power balance equation at Eq. (4)). As we already know, for the
agreement that incurs utility higher than the aspiration value for per-
spective agents, the exchanged amount and the consequent flexibility
controlling signals are already optimized and robust – due to the in-
clusion of demand/generation uncertainty in decision making; Section
3.3 – for the agents. Similar to MPC, an agent repeats the same process
at each subsequent iteration while iteratively mitigating prediction
errors of net demand. Additionally, an agent may choose to deploy a
sophisticated algorithm for controlling battery without harming the
overall framework.

4.4. Toy example: energy contract

Let’s consider two agents (Agent A and B) that are negotiating to
settle for an agreement with a planning horizon of 5 time-slots (e.g.
t t0 4). The net demand profiles for Agent A and B are assumed as
{1, 1, 2, 1, 1} and { 2, 1, 1, 1, 2} kWh, respectively.2 At t A,0 re-
quires 1 kWh while B can provide 2 kWh of energy. The example is
illustrated in Fig. 5; the negotiation flow is shown in left while the effect
of negotiation on agents are shown in right.

The negotiation starts at round 1, when A offers B by asking 0.5
kWh at t0 with a promise to give the energy back at t2 i.e. the offer

Fig. 5. Contract realization between two Agents A and B.

Table 1
Properties of the strategies.

Strategy Local trading Flexibility activation

No flexibility No No
Individual control No Yes

Negotiation and control Yes Yes

Table 2
Parameters used for simulations.

Total simulation period, T 7 days

Time granularity, t 15 min
Planning horizon, w 24 h

Net demand profile scenarios, 100
Number of discrete energy quantities, 15

Number of discrete time steps, ×w t{2, 3, , }
Maximum rounds of negotiation session before deadline 5000

Table 3
Agent Specifications: Case 1.

Agent Reservation (%) c1 c2 Capacity[kWh] Efficiency

A 52 0.33 0.67 6.8 0.9
B 50 0.71 0.29 7.0 0.8

Table 4
Agent Specifications: Case 2.

Agent Reservation (%) c1 c2 Efficiency (%) Degradation (%)

1 70 0.33 0.67 0.90 0.04
2 70 0.67 0.33 0.90 0.04
3 60 0.33 0.67 0.85 0.02
4 60 0.67 0.33 0.80 0.02
5 75 0.33 0.67 0.90 0.02
6 75 0.67 0.33 0.90 0.04
7 80 0.33 0.67 0.85 0.04
8 80 0.67 0.33 0.80 0.02
9 85 0.33 0.67 0.75 0.02

2 In this example, we assume the temporal granularity to be 1 h, so we can use
kW and kWh interchangeably.
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constitutes of = =q{ 0.5, 2}, according to Algorithm 4. B, after
receiving the offer, evaluates the offer against its private preferences on
the predefined criteria (Algorithm 5), and rejects the offer as the in-
curred utility from the offer falls below (assumed for the sake of the
example) the aspiration value of B. The negotiation thus continues and at
round 2, B states the offer – adhering to the alternating offer protocol,
Algorithm 1 – to A as = =q{ 1, 4}. Agent A receives the offer and
accepts it as the offer produces a utility that falls within the aspiration
region of A. The negotiation thus stops with an agreement. Note that, the
offering agents at both rounds (A at round 1 and B at round 2) made
offers from their higher (targeted) utility spaces. Therefore, an

agreement always stays in an intersection of aspiration regions of par-
ticipating agents.

4.5. Efficiency and fairness

In addition to the proposed negotiation based strategy, we define a
couple of complementary strategies to analyse the comparative effi-
ciencies of the resulting allocations.

• No flexibility, s0: The prosumers do not activate their batteries and
only trade residuals with external market.
• Individual control, s1: This strategy is being currently utilised in the
real residential setting, where the prosumers activate their local
batteries, individually control the batteries and trade the residuals

Fig. 6. Execution of an agreement. Effects of executing agreements – on net demand and battery dispatch profiles – reached through negotiation between two agents.

Fig. 7. Outcome space: The Agreement is reached at the 1560-th round of ne-
gotiation sessions between the agents. An exemplary outcome space of agent A
and agent B with marginal cumulative distributions of their utilities are shown.
The Nash solution, agreement and No-deal solution are plotted to illustrate their
relative distances and agents’ capability to find a deal very close to the Nash
solution under the proposed negotiation based strategy.

Fig. 8. Issue space: The negotiation domain with the juxtaposed aspiration regions
bounded by contour lines for both agents. The negotiation traces, represented
by the coloured scatters, depict the behaviour of the agents with the opponents
as both of them converge to the agreement. The gradients in the traces represent
the trace order – the darker ones are with the higher utility, which the per-
spective agents follow to reach the agreement.
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with external market. However, prosumers do not engage in trading
with each other.
• Negotiation and control, s2: The proposed strategy where prosumers
engage in bilateral negotiation over energy contracts with peers,
implement the agreement, and finally activate their batteries to
control the residual energy. The remaining energy is traded in ex-
ternal market.

The properties of the strategies are briefed in Table 1. We define the
performance of an agent achieved by applying a particular strategy. The
performance of the proposed strategy s2 considers the realized energy
profile, after periodically negotiating and implementing the agreement.
The performance is, therefore, similar to Eq. (9) except it takes into
account the realized energy profile and the consequent battery dis-
patch.

= × + + ×s Pb t Ld tX( ) ( ) ( ) | ( )| .i
t

T

i
t

T

i
res

i2 1 2
(16)

For strategy s0, the s( )i 0 only considers the autarky components –
without the energy exchange component, i.e. ex t( )j J i j, in Eq. (4).
And for strategy s1, the s( )i 1 considers both criteria, but again without
the flexibility component (i.e. =Pb t( ) 0i ).

In order to validate the efficiency of the strategies s s s{ , , }0 1 2 in
improving the social welfare, we define the utilitarian social welfare as

=sw s( ),s
i

N

i
(17)

for all s . Moreover, we quantify the relative fairness of a strategy s
(to another strategy h) based on the Nash social welfare criterion, an
established concept of fairness [32], as following

=nw s h( ( ) ( )).s h
i

N

i i
(18)

5. Numerical simulation and discussion

In this section, we consider two cases of varied scaled cooperatives
to empirically evaluate different aspects of the proposed strategy.

• Case 1: Cooperative of 2 agents presents the effects of the proposed
strategy on the residual demand and consequent battery dispatch,
and the agents’ negotiation domain exploring phenomena.
• Case 2: Cooperative of 9 agents verifies the quality of the allocation
achieved by the proposed strategy from the perspectives of effi-
ciency and fairness and investigates agents’ P2P interactions.
• Case 3: Cooperative of 100 agents verifies the scalability of the pro-
posed strategy.

The aforementioned cases assume the local flexibility (i.e. battery)
is owned privately and controlled individually by the prosumers. The
proposed algorithms are implemented and the simulation is conducted
using Python (version 3.7) programming language on a Windows ma-
chine (Intel Core i5 2.3 GHz with 16 GB RAM). The total simulation
period is taken as 7 days with 15-min granularity, i.e. =t 15. The
planning horizon w is set out to be 24-h, which means an agent eval-
uates an energy contract considering the potential effect the contract will
have on its energy profile in the next 24 h. The number of net-demand
scenarios (in Eq. (14)) is set to 100. As for constructing the nego-
tiation domain = × , the set contains 15 discrete energy
quantities, and the set contains discrete time steps of

×w t{2, 3, , }. The deadline for a negotiation session is set out to be
5000 rounds. The parameters are summarised in Table 2. The case-
specific parameter settings are listed in Table 3 and Table 4 for Case 1
and 2, respectively.

5.1. Case 1: Cooperative of 2 Agents

Flexibility activation through battery enhances the potential bene-
fits as two agents could negotiate even when their net demand status
are equal (i.e. both positive or negative). The specification of the agents
with associated battery information is provided in Table 3. The char-
ging and discharging rates of these batteries are 1.3 kW and 3.3 kW,
respectively. The SOC of the batteries are operated within 20% to 90%
of the respective capacities, and the degradation rate is set as 0.04% of
the same. As pointed at the Table, agent A values criterion c2 than cri-
terion c1; that is the agent places higher preferences on autarky, while
agent B prefers loss in flexibility more.

Fig. 6 shows effects of energy exchange (through negotiation) and
resulting battery dispatch between agent A and agent B. The residual
demand profiles resulting from negotiation clearly reflect the pre-
ferences of the agents. For instance, the battery dispatch profile of agent
B, who cares more about the loss in flexibility, exhibits a relative fluc-
tuating signal that results in an almost neutralized losses. The apparent
fluctuations in the battery dispatches are due to the fact that they both
agents implement a naive battery scheduling technique, as described in
Section 3.1. However, in the proposed framework, agents can easily
mitigate such fluctuations by integrating an additional cost function –

Fig. 9. Distributions of the Euclidean distance to the Nash solution from the
agreements and the no-deal solutions in the outcome space and estimations of
corresponding Gaussian kernel densities. The majority resulting agreements are
locating themselves closer to the Nash solutions, hence confirm the fairness of
the energy allocations.

Fig. 10. Agents utility improvement of individual control strategy (horizontal)
and negotiation and control strategy (vertical) over no flexibility baseline. Agents
are above the dashed equal improvements line, hence our newly proposed
strategy dominates individual control, while also improving relative fairness
( >nw nw1.38·10 3.35·10s s s s2 0

19
1 0

17).
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that penalizes such behaviour, into their utility function and subse-
quently placing a higher weight on that cost function.

Now, we analyse the exploration of negotiation domain by agents as
they reach agreements by scrutinizing the issue space and the outcome
space. For this experiment, the aspiration quantile of the agents are kept
identical, 80% each, while the weights of the criteria are varied – agent
A: = =0.33, 0.671 2 , agent B: = =0.67, 0.331 2 . Additionally, the
round-trip efficiencies and the degradation rate of the agents’ battery
are diversified as well – round-trip efficiencies of agent A and agent B are
set as 80%, and the degradation rates are set as 0.04% and 0.02% (of
battery capacity), respectively. Fig. 7 depicts a two-dimensional out-
come space that emerges from the negotiation interactions between the

agents and their marginal cumulative distributions of utility over nego-
tiation domain. The trace of negotiation – from the perspective of in-
dividual agents – illustrate the power of heterogeneous preferences and
the multi-issue setting, because the agents are able to exhaustively
explore their iso-utility curves and concede until an agreement is found.

Although the agreement does not exactly reach the Nash solution, it
still yields utilities that are located over 80% quantile range of the dis-
tributions. As shown in the figure, the no-deal solution (defined in

Fig. 11. Hourly distribution of the (agreed) energy volumes to be exchanged (q ) compiled over 7 days. Evidently, the agents are more flexible around the sunny
hours and tend to exchange a larger volume of energy during these periods.

Fig. 12. Distribution of (absolute) peak ex-
change – inside the REC and aggregated over all
P2P exchange in every 15 min – over 7 days of
simulation period. The P2P negotiation and re-
sulting exchange does not congest the physical
network excessively. Relatively higher ramp of
congestions could be noticeable during the
sunny periods.

Fig. 13. Comparison of peak power distribution at PCC between the proposed
Negotiation and control strategy and Individual control strategy. The re-
presentative distribution of Negotiation and control strategy considers the return
of the energy loan as well. The resulting exchanges do not excessively congest
the physical network in terms of peak power compared to that of Individual
control.

Fig. 14. Improvements in agents utility over the comparative strategies in an
REC of 100 prosumers.
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Definition 6) that attributes the situation when the agents do not en-
gage in negotiation and consequently do not exchange energy, is lo-
cated further down from the agreement. Therefore, the agreement and
consequent energy exchange are more attractive for engaging agents. In
addition, the agreement is almost co-located with the Nash solution and
thus implying the fact that the agents almost managed to crack the
fairest agreement, which could not happen due to agents’ individual
preferences. The issue space, represented by Return time ( ) vs. Quantity
(q), under the corresponding negotiation domain, is illustrated in Fig. 8.
The figure further points out the aspiration regions of both agents and
the phenomenon of how the agreement is found at one of the intersec-
tions of the contoured aspiration regions. As shown in the Figure, the
individual traces – represented by colour gradients – of the utility space
exploration by each agent converge at the agreement.

5.2. Case 2: Cooperative of 9 Agents

In this case, we analyse a higher scaled cooperative with 9 agents.
The specifications of the agents are detailed in Table 4. Overall, the
experiments is run for a 7-day period (Eq. 672 timestamps) with a
success rate of 85%, i.e. 15% of the time the agents failed to strike any
deal, and no exchange is performed. The success rate of the negotiation
is improved by 5% due to the deployment of an intelligent peer selec-
tion process (described in Section 4.2); the randomized peer selection
strategy yielded to a success rate of 80%.

5.2.1. Allocation efficiency and fairness
Fig. 9 elucidates the quality of the outcome through the distribution

of the Euclidean distance from the agreement to the Nash solution, and
how an agreement outperforms a no-deal solution by being more likely to
be the Nash solution for a negotiation session. The histograms are fitted
through Gaussian distribution, and it is apparent from the kernel density
of the distance distribution of the agreements that the resulting allocations
of energy derived from the negotiation based strategy are fairer than
that of a non-negotiation based strategy.

To further illustrate the performance of the proposed negotiation
based strategy, we turn the analysis toward the allocative efficiency of
the same, and discuss how the strategy establishes itself preferable for
all agents over a baseline strategy of no flexibility and a strategy of in-
dividual control of flexibility without any P2P exchange, which were
defined in Section 4.5. Fig. 10 presents the relative increase in utility for
each prosumer of an EC with 9 agents, comparing the improvements of
individual control strategy and negotiation and control strategy over no
flexibility strategy. As seen in the figure, s s( ( ) ( ))i i2 0 dominates over

s s( ( ) ( ))i i1 0 by placing itself over the equal-improvement dashed

line. Therefore, it implies that the utilitarian social welfare criterion is
maximized by the proposed negotiation and control strategy for all
agents. Additionally, the relative fairness (measured by the Nash social
welfare, Eq. (18)) is also improved by the proposed strategy, more
specifically, >nw nw2.79·10 2.21·10s s s s

19 17
2 0 1 0 .

Now to analyse the traded energy through the pairwise interactions
among agents, we plot the periodical distributions of the traded energy
(settled by the contract) over the entire simulation period of 7 days
projected over a day. Fig. 11 illustrates the distribution through box-
whisker plots. The flexibility of agents in exchanging energy is quite
apparent during the sunny period, while in the non-sunny periods, the
agents are more interested in exchanging smaller volume of energy with
peers.

Fig. 12 and 13 provide insights on the impact of the trading re-
sulting from the P2P negotiation strategy on the underlying physical
network – within the REC and through Point of Common Coupling
(PCC), respectively. As the negotiation process requires energy to be
exchanged back and forth between two prosumers, it is important to
analyse the effect of that double exchange on the distribution network.
Evidently, the proposed negotiation based strategy does not impose
excessive strain in the network as shown in Fig. 12. The figure illus-
trates that the periodical distribution of the peak exchanged power is at
its peak around the range of 2.4kW during the sunny hours where re-
latively higher congestions are expected. Having said that, the peak is
tolerable considering the size of the REC and under a safe limit of
5.0kW. 3 Fig. 13 describes the relative distributions of peak power ex-
changed resulting from the proposed strategy and the Individual control
strategy. The strategy encourages exchange within REC and hence re-
duces the interactions with the external grid. While the average of peak
power flow through PCC using the proposed strategy is 0.36kW , the
same for the individual and control strategy is kW0.39 . The peak power,
i.e. the maximum of the periodical peak flow, however, increases from
2.40kW to 6.34kW when the proposed strategy is utilized. Nevertheless,
the power is still under the trip-limit of a PCC hosting the REC.
Therefore, the strain on the network due to energy exchange is not
excessive. Note that in our setting, the agents had no particular concern
to minimize the peak; however, in cases where peak congestion at POC
is expected agents could model a shared peak price component or the
risk of peak violation in their preferences, thus explicitly considering
network constraints.

5.3. Case 3: Cooperative of 100 Agents

In this case, we investigate the scalability of the proposed negotia-
tion based strategy by extending Case 2’s 9 agents to 100 agents. The
load and generation profiles of the additional agents are copied with
small variances. Fig. 14 illustrates the relative improvements in social
welfare criteria using the proposed Negotiation and control strategy (si-
milar to Fig. 10) when the size of the cooperative is multiplied. As
shown in the Figure, the proposed strategy improves the social welfare
indices from both utilitarian and fairness perspectives for all agents in
the cooperative. The small clusters of the scattered points are due to the
small variances in the extended prosumers’ profiles.

5.4. P2P interaction analyses

In this section, we analyse the interactions between agents
throughout the negotiation process. Particularly, we focus on agents’
behaviours in settling contracts with their peers. An experiment is
conducted by executing negotiation with all possible pairs throughout a
particular period – e.g. 4 days. The idea is to seek for any emerging
segmentations (or, lack thereof) among agents while identifying an
appropriate set of agents who could be beneficial by pairing-up with

Fig. 15. Negotiation preference graph of the cooperative; the prosumers are
plotted as the nodes. The gradient of the edges represent the strength of the P2P
negotiation outcome calculated as the Euclidean distance between the agree-
ment and the Nash solution averaged over 4 days.

3 considering the Dutch power system of 3 phase 16Amp with V230 .
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each other to produce a successful and efficient exchange of energy. We
utilised the matrix of fair outcome through Nash solution to identify the
strength of a pair. The fair outcome measure is also utilised to form the
basis of peer selection process (Section 4.2). As mentioned previously,
the fairness of an agreement measured by the distance between the
agreement and the Nash solution; the closer the agreement is from the
Nash solution, the fairer the contract is. Fig. 15 is created considering
the Euclidean distance between the agreements and the Nash solutions
averaged over a period of negotiation session ( =T 384, equivalent to
4 days). The figure highlights the quality of the pairwise interactions in
achieving a fair outcome. The graph does not represent the physical
network of the REC, rather it is a qualitative representation of the P2P
interaction analyses of the agents. Analysing the graph, we could
identify the set of prosumers that should (or not) negotiate with each
other to create an optimized cooperative. For instance, agents 6, 7, and
8 should not engage in any negotiation as they never settle for any
contract. The graph further strengthens the importance of having an
intelligent peer selection procedure as opposed to a randomized
strategy for the same.

6. Conclusion

A residential cooperative potentially exhibits inefficiencies due to
renewable power integration and uncoordinated activations of locally
owned distributed energy resources of heterogeneous prosumers.
Automated negotiation – a natural model of interaction – has the ability
to alleviate these inefficiencies by accommodating the heterogeneous
preferences of prosumers in joint decision making. In this paper, we
present a peer-to-peer automated bilateral negotiation strategy for energy
contract settlement between prosumers. The prosumers jointly seek for
an agreement on energy contracts/loans – consisting of energy volume to
be exchanged and the return time of the exchanged energy – that
maximises their preferences by evaluating the realized energy profiles
and the consequent flexibility dispatch. Although we consider a pre-
defined set of criteria for the agents to have the preferences on, in
reality, the agents may have a diverse set of mutually exclusive con-
straints that shape up their personal preferences. The proposed nego-
tiation strategy allows the agents to effortlessly stack-up those local
constraints weighing by preferences while settling for the contracts.
Additionally, the strategy inherently follows a closed-loop solution fra-
mework and thereby alleviating the uncertainties imposed by local load
and generation profiles. The prosumers utilise an intelligent peer se-
lection strategy that increases the quality of an agreement and the
likelihood of the negotiation being successful. The proposed negotiation
based strategy has the potential to identify the group of negotiation-
compatible prosumers. The strategy is applied to real energy profiles,
and results in an improved utilitarian social welfare as well as improved
fairness w.r.t. Nash social welfare; which is remarkable considering that
the allocations are achieved from single pairwise interactions amongst
prosumers.

In this paper, we assume the weights an agent places on the criteria
to be predefined, whereas in practice, an agent may be uncertain about
the preferences and may need to elicit them from prosumers in a cost-
effective way [33,34]. Future work may investigate the case where the
agents exhibit uncertainty over the preferences and are required to
negotiate successfully with partial preferences. Additionally, we do not
explicitly consider the physical nature of the distribution system and
hence refrain to perform a power-flow analysis on the underlying dis-
tribution network. Such a consideration is really critical in analysing
the applicability of the proposed P2P negotiation and consequent ex-
change in real microgrid setting – particularly, the real-time effect of
power-flow, both active and reactive, resulting from the exchange and
return nature of the proposed method. Moreover, the impact of such
exchange on the voltage and frequency regulation should need to be
carefully analysed and calibrated. However, we statistically showed
that the resulting exchange due to the allocation determined by the

proposed method do not stress out the network, and hence the proposed
method may be implemented in the real system. Having said that, in a
follow-up research, we will investigate the effect of the proposed
method on the distribution network considering the physicality of the
network.
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